Intermediate Value Theorem

8. State the Intermediate Value Theorem.

Give an example of a strictly increasing function f on $[0,1]$ and a value $\gamma: f(0)<\gamma<f(1)$ for which there is not a $c \in[0,1]$ with $f(c)=\gamma$.

Solution Intermediate Value Theorem Suppose that f is a function continuous on a closed interval $[a, b]$ and that $f(a) \neq f(b)$. For all γ between $f(a)$ and $f(b)$ there exist $c: a<c<b$ for which $f(c)=\gamma$.

For the required example: choose $f:[0,1] \rightarrow[0,1]$,

$$
x \longmapsto\left\{\begin{array}{cl}
\frac{2 x}{3} & 0 \leq x \leq \frac{1}{2} \\
\frac{1+2 x}{3} & \frac{1}{2}<x \leq 1 .
\end{array}\right.
$$

The image of this function is $[0,1 / 3] \cup(2 / 3,1]$. Choose $\gamma=1 / 2$. There is no c for which $f(c)=1 / 2$.

The point of this question is, does the conclusion of the Intermediate Value Theorem follow if we weaken the assumption, i.e. if we do not assume f is continuous. Answer NO. In this example we have a non-continuous function for which the conclusion does not follow.
9. Show that

$$
e^{x}=\frac{1}{x}
$$

has a solution in $[0,1]$.

Solution Multiply up and let $f(x)=x e^{x}-1$. Then $f(0)=-1<0$ and $f(1)=e-1>0$. Thus 0 is intermediate between $f(0)$ and $f(1)$, i.e. $f(0)<0<f(1)$. So by the Intermediate Theorem with $\gamma=0$ there exists $c \in(0,1)$ such that $f(c)=\gamma=0$, i.e. $c e^{c}-1=0$. Since $c>0$ we can rearrange and divide by c to get

$$
e^{c}=\frac{1}{c} .
$$

Plots of $y=1 / x, y=e^{x}$ and $y=x e^{x}-1$:

Note if you were to define $f(x)=e^{x}-1 / x$, then $f(0)$ would not be defined. Instead we follow the principle of ridding ourselves of fractions whenever possible. End of Note
10. Show that $e^{x}=4 x^{2}$ has at least three real solutions.

Solution Let $f(x)=e^{x}-4 x^{2}$. You have to look at random intervals trying to find sign changes. As example, at the points $x=-1,0,1$ and 8 we find

$$
\begin{aligned}
f(-1) & =e^{-1}-4 \times(-1)^{2}<0 \\
f(0) & =e^{0}-4 \times 0^{2}=1>0 \\
f(1) & =e^{1}-4<0 \\
f(8) & =e^{8}-4 \times 8^{2}>2^{8}-2^{8}=0 .
\end{aligned}
$$

(In the last line I have used the weak (but strict) lower bound of $e>2$). Thus there are sign changes in each of the intervals $[-1,0],[0,1]$ and $[1,8]$ and hence a zero in each interval.

Plot of $y=e^{x}-4 x^{2}$

